
DEEP LOGIC AUDIT
REPORT
ArbiDex: Arbitrage, ArbiDexRouter, and
ArbDexFactory

APR 08 2023

ARBIDEX

Overview 03

Contract Addresses 06

Arbitrage 07

ArbiDexRouter 18

ArbDexFactory 21

How To Interpret Findings 22

Disclaimer 23

Table of Contents

DEEP LOGIC AUDIT | PAGE 3

Overview

This audit only covers the Arbitrage, ArbiDexRouter, and
ArbDexFactory contracts. It does not cover any other contracts built by
ArbiDex.

A deep logic smart contract audit is a human-driven code review
that checks all of the code business logic for bugs, mathematical
errors, and security risks. The audit verifies that the code honors
the whitepaper. In addition, this service includes mainnet testing
and proactive communication with the project owners to ensure
full comprehension of the project to provide the best possible code
review quality.

What is a Deep Logic Audit?

DEEP LOGIC AUDIT | PAGE 4

Overview

Total Findings Resolved Acknowledged

Total Findings 12 12 0

High Security Findings 0 0 0

Medium Security Findings 0 0 0

High Logical Findings 5 5 0

Medium Logical Findings 3 3 0

Informational Findings 4 4 0

Findings Summary

ID Section Type Severity Page Status

ABG-01 Arbitrage Logical High 07 Resolved

ABG-02 Arbitrage Logical High 08 Resolved

ABG-03 Arbitrage Logical High 09 Resolved

ABG-04 Arbitrage Logical High 10 Resolved

ABG-05 Arbitrage Logical Medium 11 Resolved

ABG-06 Arbitrage Logical Medium 12 Resolved

ABG-07 Arbitrage Logical Informational 13 Resolved

DEEP LOGIC AUDIT | PAGE 5

Overview
Findings Summary

ID Section Type Severity Page Status

ABG-08 Arbitrage Logical Informational 14 Resolved

ABG-09 Arbitrage Logical Informational 15 Resolved

ABG-10 Arbitrage Logical Informational 16 Resolved

DXR-01 ArbiDexRouter Logical High 18 Resolved

DXR-02 ArbiDexRouter Logical Medium 19 Resolved

DEEP LOGIC AUDIT | PAGE 6

Contract Addresses
Arbitrage
https://arbiscan.io/address/0x1e837Ea6F3C1ee918AEFA8db7a2221D4EAAe1c21#code

ArbiDexRouter
https://arbiscan.io/address/0x7238FB45146BD8FcB2c463Dc119A53494be57Aac#cod
e

ArbDexFactory
https://arbiscan.io/address/0x1c6e968f2e6c9dec61db874e28589fd5ce3e1f2c#code

https://arbiscan.io/address/0x1e837Ea6F3C1ee918AEFA8db7a2221D4EAAe1c21#code
https://arbiscan.io/address/0x7238FB45146BD8FcB2c463Dc119A53494be57Aac#code
https://arbiscan.io/address/0x1c6e968f2e6c9dec61db874e28589fd5ce3e1f2c#code

generateApproval only approves a limited amount of tokens to the router. If more than
the specified amount of tokens are transferred, this will result in the failure of any
functions requiring the router to transfer said tokens from the contract. The
conductArbitrage function does not currently re-add approval due the checks if
(!approvedTokens[tokenA]) and if (!approvedTokens[tokenB]). This is important
because the “unlimited” approval mentioned earlier might not actually be truly
unlimited in some cases, like for USDC on Arbitrum, which does not have unlimited
approval logic.

Recommendation
Grant unlimited approval to the router by instead calling
IERC20(_token).approve(router, type(uint256).max); Also change generateApproval to
be a public function to allow re-adding approval for USDC if necessary. Finally, calling
generateApproval in conductArbitrage is not required. This is because the router only
ever transfers USDC from the Arbitrage contract. So approvedTokens can also be
removed. This will help save a small amount of gas.

Resolution
The team has implemented the recommendation.

Audit Findings
Arbitrage

ABG-01 - Logical High Severity

DEEP LOGIC AUDIT | PAGE 7

tryArbitrage contains a loop without a specified hard limit. If the loop grows too large,
the function may face an out-of-gas error, preventing the function from being called
and locking out the contract (and the ArbiDexRouter contract which relies on it).

Recommendation
Add an admin function to remove pairs from arbPairs to limit the loop size if necessary.

Resolution
The team has implemented the recommendation.

Audit Findings
Arbitrage

ABG-02 - Logical High Severity

DEEP LOGIC AUDIT | PAGE 8

Similar to ABG-02, the recursive nature of computeProfit may result in out-of-gas
errors if too many recursive calls happen.

Recommendation
Limit the number of recursive calls that can be done:

function computeProfit(uint256 amountIn) internal {
 if (computeProfitCalls == computeProfitCallsLimit) {
 return;
 }
 computeProfitCalls += 1;
 …
}

function conductArbitrage(address tokenA, address tokenB) internal {
 computeProfitCalls = 0;
 ...
}

function setComputeProfitCallsLimit(uint256 limit) external onlyOwner {
 computeProfitCallsLimit = limit;
}

Resolution
The team has implemented the recommendation.

Audit Findings
Arbitrage

ABG-03 - Logical High Severity

DEEP LOGIC AUDIT | PAGE 9

In conductArbitrage, the require(profit > 0, "Not profitable"); statement will result in
token swaps failing if there is no profit to be made.

Recommendation
Replace the require statement with an if-condition.

Resolution
The team has implemented the recommendation.

Audit Findings
Arbitrage

ABG-04 - Logical High Severity

DEEP LOGIC AUDIT | PAGE 10

conductArbitrage does not check that the treasury has the 10 USDC, which could result
in token swaps failing.

Recommendation
Similar to computeProfit, the following check should be added in conductArbitrage: if
(amountIn > IERC20(USDC).balanceOf(treasury)) {return;}

Resolution
The team has implemented the recommendation.

Audit Findings
Arbitrage

ABG-05 - Logical Medium Severity

DEEP LOGIC AUDIT | PAGE 11

removePair fails the edge case of the provided _pairAddress not existing in
arbPairIndices/arbPairs. It will result in the pair in index 0 of arbPairs being removed
even though it might not be the same _pairAddress.

Recommendation
Update the code as such:

struct Index {
 uint256 index;
 bool exists;
}

mapping(address => Index) public arbPairIndices;

function addPair(address _pairAddress) external onlyOwner {
 arbPairs.push(Pair(_pairAddress, [IArbDexPair(_pairAddress).token0(),
IArbDexPair(_pairAddress).token1()]));
 arbPairIndices[_pairAddress] = Index(arbPairs.length - 1, true);
}

function removePair(address _pairAddress) external onlyOwner {
 Index memory index = arbPairIndices[_pairAddress];
 require(index.exists);
 …
}

Resolution
The team has implemented the recommendation.

Audit Findings
Arbitrage

ABG-06 - Logical Medium Severity

DEEP LOGIC AUDIT | PAGE 12

The setMultiplier function does not check that the provided value is in a reasonable
range.

Recommendation
Add minimum and maximum values for the multiplier value.

Resolution
The team has implemented the recommendation.

Audit Findings
Arbitrage

ABG-07 - Logical Informational Severity

DEEP LOGIC AUDIT | PAGE 13

minimumTokensOut and requiredTokens should also probably be set in the if-
conditions in conductArbitrage in case computeProfit is not able to generate any extra
profit.

Recommendation
Set the values of minimumTokensOut and requiredTokens in conductArbitrage.

Resolution
The team has implemented the recommendation.

Audit Findings
Arbitrage

ABG-08 - Logical Informational Severity

DEEP LOGIC AUDIT | PAGE 14

To save a small amount of gas, using (block.timestamp + 120) is not necessary in the
swapExactTokensForTokens function call.

Recommendation
Simply use block.timestamp in the swapExactTokens ForTokens function call.

Resolution
The team has implemented the recommendation.

Audit Findings
Arbitrage

ABG-09 - Logical Informational Severity

DEEP LOGIC AUDIT | PAGE 15

In conductArbitrage, one of the two if-conditions should have > changed to >=
(amounts1[amounts1.length-1] >= amounts2[amounts2.length-1] in the first if-condition
or amounts2[amounts2.length-1] >= amounts1[amounts1.length-1] in the second if-
condition). That is to ensure profit is taken if both paths produce the same amount
which is greater than the expectedAmount.

Recommendation
Change one of the two if-conditions to be >= instead of >.

Resolution
The team has implemented the recommendation.

Audit Findings
Arbitrage

ABG-10 - Logical Informational Severity

DEEP LOGIC AUDIT | PAGE 16

Overview
Arbitrage

DEEP LOGIC AUDIT | PAGE 17

This contract is used to conduct arbitrage on specified ArbiDex token pairs when
token swaps occur. It tries to swap as much USDC as possible through 3 different
token pairs to generate USDC profit, taking into account fees that are generated
from the token swaps, which is done throught the tryArbitrage function that is
called by the ArbiDexRouter in the token swap functions.

swapExactTokensForTokens depends on Arbitrage::tryArbitrage, which in turn
depends on swapExactTokensForTokens, forming a circular dependency. This could
result in a call to either of those functions to revert if there is an arbitrage opportunity
created by the swap.

Recommendation
An if-condition should be added in swapExactTokensForTokens to prevent
Arbitrage::tryArbitrage from being called if msg.sender is the Arbitrage contract.

Resolution
The team has implemented the recommendation.

Audit Findings
ArbiDexRouter

DXR-01 - Logical High Severity

DEEP LOGIC AUDIT | PAGE 18

The supportingFeeOnTransferTokens functions should also call
IArbitrage(arbitrage).tryArbitrage(); to capture arbitrage opportunities. Moreover,
_swapSupportingFeeOnTransferTokens should not call
IArbitrage(arbitrage).tryArbitrage(); directly if its calling functions are already calling it.

Recommendation
Call IArbitrage(arbitrage).tryArbitrage(); in the supportingFeeOnTransferTokens
functions, but not in _swapSupportingFeeOnTransferTokens.

Resolution
The team has implemented the recommendation.

Audit Findings
ArbiDexRouter

DXR-02 - Logcal Medium Severity

DEEP LOGIC AUDIT | PAGE 19

Overview
ArbiDexRouter

DEEP LOGIC AUDIT | PAGE 20

This contract is a fork of the PancakeSwap RouterV2 contract, which is slightly
modified to call IArbitrage(arbitrage).tryArbitrage(); to capture arbitrage
opportunities.

Overview
ArbDexFactory

DEEP LOGIC AUDIT | PAGE 21

This contract is a fork of the PancakeSwap Factory contract, with the LP mint fees
being 20/25 of the growth of the root of K, instead of PancakeSwap's 8/25 of the
growth of the root of K.

How to Interpret Findings

Security - High Severity

Indicates that users' funds are at risk or that there is a high
probability of exploitation.

Security - Medium Severity

No risk to the protocol or those who interact with it, however it
should be highlighted nonetheless.

Logical - High Severity

Indicates that the errors puts users' funds at risk, or can result in
significant functional failure in the code.

Logical - Medium Severity

Indicates some functional failure or discrepancy in the code.

Logical - Informational

Minor discrepancy between the intended functionality of the code
and the implementation, which does not result in functional failure,
or a recommendation to improve the logic.

Yellow Text

Indicates centralization of control and admin powers.

Red Text

An important warning to take note of.

DEEP LOGIC AUDIT | PAGE 22

The information in this deep logic audit report objectively describes the
smart contracts being audited, and points out logical and mathematical
errors, security risks and vulnerabilities, and optimization opportunities in
the audited code. This deep logic audit does not ensure the correctness or
authenticity of any software or dApp that interacts with or claims to
interact with any smart contract.

This audit report does not constitute any advice whatsoever. You are
solely responsible for conducting your own due diligence and consulting
your financial advisor before making any investment decisions. Trust in
project owners is required to invest in this protocol as a Prisma Shield
audit does not ensure the fulfillment of roadmap deliverables and
allocation of funds. While our deep logic audits raise the level of security,
reliability, mathematical accuracy, and logical soundness of the smart
contracts reviewed, they do not amount to any form of warranty or
guarantee that the reviewed smart contracts are void of any weaknesses,
vulnerabilities, or bugs. Prisma Shield and its founders, employees,
owners, and associates are not liable for any damage or loss of funds.
Please ensure trust in the team prior to investing as this deep logic audit
does not guarantee the promised use of your funds.

Disclaimer

DEEP LOGIC AUDIT | PAGE 23

prismashield@gmail.com

prismashield.com

PrismaShield

Introducing Deep Logic
Smart Contract
Auditing to Web3

PrismaShield

mailto:prismashield@gmail.com
http://prismashield.com/
http://twitter.com/PrismaShield
https://t.me/PrismaShield

