
DEEP LOGIC AUDIT
REPORT
CrescentSwap: Moonlight token and
MoonlightRedeem Contracts

MAY 24 2023

CRESCENTSWAP

Overview 03

Contract Addresses 06

Moonlight 07

MoonlightRedeem 16

How To Interpret Findings 23

Disclaimer 24

Table of Contents

DEEP LOGIC AUDIT | PAGE 3

Overview

This audit only covers the Moonlight token and MoonlightRedeem
contracts. It does not cover any other contracts built by CrescentSwap.

Moonlight token a simple ERC20 token with added centralization of
control. It allows the contract owner (Gnosis multisig address
0x70fDFC034f2AB7Ab8E279f1A30d4Af2905F8C06D) to blacklist
addresses from transferring the token. The reason the team gave for
having this feature is to disallow the token from being listed on some
DEXes. The token also allows the owner to disable token transfers in
general.

MoonlightRedeem allows burning Moonlight tokens in exchange for
receiving USDT and other tokens added to the MoonlightRedeem
contract.

A deep logic smart contract audit is a human-driven code review
that checks all of the code business logic for bugs, mathematical
errors, and security risks. The audit verifies that the code honors
the whitepaper. In addition, this service includes mainnet testing
and proactive communication with the project owners to ensure
full comprehension of the project to provide the best possible code
review quality.

What is a Deep Logic Audit?

DEEP LOGIC AUDIT | PAGE 4

Overview

Total Findings Resolved Acknowledged

Total Findings 13 13 0

High Security Findings 3 3 0

Medium Security Findings 0 0 0

High Logical Findings 5 5 0

Medium Logical Findings 2 2 0

Informational Findings 3 3 0

Findings Summary

ID Section Type Severity Page Status

MLT-01 Moonlight Security High 07 Resolved

MLT-02 Moonlight Security High 08 Resolved

MLT-03 Moonlight Logical High 09 Resolved

MLT-04 Moonlight Logical High 10 Resolved

MLT-05 Moonlight Logical Medium 11 Resolved

MLT-06 Moonlight Logical Medium 12 Resolved

MLT-07 Moonlight Logical Informational 13 Resolved

DEEP LOGIC AUDIT | PAGE 5

Overview
Findings Summary

ID Section Type Severity Page Status

MLT-08 Moonlight Logical Informational 14 Resolved

RDM-01 MoonlightRedeem Security High 16 Resolved

RDM-02 MoonlightRedeem Logical High 17-18 Resolved

RDM-03 MoonlightRedeem Logical High 19 Resolved

RDM-04 MoonlightRedeem Logical High 20 Resolved

RDM-05 MoonlightRedeem Logical Informational 21 Resolved

DEEP LOGIC AUDIT | PAGE 6

Contract Addresses

Moonlight
https://arbiscan.io/address/0x0a1694716DE67c98f61942b2cAB7Df7FE659c87A#cod
e

MoonlightRedeem
https://arbiscan.io/address/0x209c4e58ffd5dff54dc4283e23c17052c91bc749#code

https://arbiscan.io/address/0x0a1694716DE67c98f61942b2cAB7Df7FE659c87A#code
https://arbiscan.io/address/0x209c4e58ffd5dff54dc4283e23c17052c91bc749#code

The Gnosis multisig address 0x70fDFC034f2AB7Ab8E279f1A30d4Af2905F8C06D
can't be used directly to deploy the contract on the blockchain, and therefore is not the
contract owner on deployment. The deploying non-multisig address will need to
explicitly call transferOwnership post-deployment. If ownership is not transferred to
the Gnosis multisig address, the non-multisig address will have unilateral control over
the contract, and will be able to call all admin functions unilaterally.

Recommendation
Call _transferOwnership(0x70fDFC034f2AB7Ab8E279f1A 30d4Af2905F8C06D); in
the constructor.

Resolution
The team has implemented the recommendation.

Audit Findings
Moonlight

MLT-01 - Security High Severity

DEEP LOGIC AUDIT | PAGE 7

The burnFrom function allows anyone to burn anyone else’s tokens.

Recommendation
Remove the custom burnFrom implementation and instead inherit from the
OpenZeppelin ERC20Burnable contract.

Resolution
The team has implemented the recommendation.

Audit Findings
Moonlight

MLT-02 - Security High Severity

DEEP LOGIC AUDIT | PAGE 8

The contract does not have the burn or burnFrom functions implemented, which are
required by other contracts.

Recommendation
Inherit from the OpenZeppelin ERC20Burnable contract.

Resolution
The team has implemented the recommendation.

Audit Findings
Moonlight

MLT-03 - Logical High Severity

DEEP LOGIC AUDIT | PAGE 9

addToBlacklist should not be allowed to add _feeReceiver and the WrappedMoonLight
contract address to _blacklist. And similarly, setFeeReceiver should not allow setting an
address that is in _blacklist. If these happen, the other contracts would stop working as
expected.

Recommendation
Add require statements to addToBlacklist to reject an address that is _feeReceiver or
WrappedMoonLight, and add a require statement to setFeeReceiver to reject an
address that is in _blacklist.

Resolution
The team has entirely removed _feeReceiver and the WrappedMoonLight contract.

Audit Findings
Moonlight

MLT-04 - Logical High Severity

DEEP LOGIC AUDIT | PAGE 10

The initial total supply is set to 3M tokens, but it is supposed to be 4M.

Recommendation
Set _initialSupply = 4000000 * 10**18;

Resolution
The team has implemented the recommendation.

Audit Findings
Moonlight

MLT-05 - Logical Medium Severity

DEEP LOGIC AUDIT | PAGE 11

The msg.sender in the constructor and _feeReceiver are not whitelisted, and so their
token transfers will be taxed.

Recommendation
Add msg.sender and _feeReceiver to _whitelist in the constructor, and setFeeReceiver
should be modified to set _whitelist to true for the new _feeReceiver (and optionally
false for the old _feeReceiver). Moreover, removeFromWhitelist should not be allowed
to remove _feeReceiver from _whitelist.

Resolution
The team has removed _feeReceiver, whitelisting, and the fee-on-transfer from the
contract.

Audit Findings
Moonlight

MLT-06 - Logical Medium Severity

DEEP LOGIC AUDIT | PAGE 12

In _beforeTokenTransfer, there is no need to call super._beforeTokenTransfer(from, to,
amount); which has an empty implementation.

Recommendation
Remove super._beforeTokenTransfer(from, to, amount); from _beforeTokenTransfer.

Resolution
The team has implemented the recommendation.

Audit Findings
Moonlight

MLT-07 - Logical Informational Severity

DEEP LOGIC AUDIT | PAGE 13

addToBlacklist, removeFromBlacklist, burn, and burnFrom are not called in this
contract, yet they are set to public visibility
Warning: Unused function parameter. Remove or comment out the variable name
to silence this warning: the amount parameter in _beforeTokenTransfer
_beforeTokenTransfer does not modify any state variables, but its mutability is not
set to view

Change addToBlacklist, removeFromBlacklist, burn, and burnFrom from public to
external
Change _beforeTokenTransfer to:

Recommendation

 function _beforeTokenTransfer(address from, address to, uint256) internal
view whenNotPaused override {
 ...
 }

Resolution
The team has implemented the recommendations, and removed the custom
implementation of burn and burnFrom.

Audit Findings
Moonlight

MLT-08 - Logical Informational Severity

DEEP LOGIC AUDIT | PAGE 14

Overview
Moonlight

DEEP LOGIC AUDIT | PAGE 15

This contract is an ERC20 token that has added centralization of control. It allows
the contract owner (Gnosis multisig address
0x70fDFC034f2AB7Ab8E279f1A30d4Af2905F8C06D) to blacklist addresses
from transferring the token and also to disable token transfers in general.

addToBlacklist and removeFromBlacklist can be used to add or remove an address
from the token transfer blacklist. The contract owner has admin powers to call
these functions.

pause and unpause can be use to disable or enable token transfers. The contract
owner has admin powers to call these functions.

addToken allows adding already added tokens, which can be abused to redeem more
tokens than allowed.

Recommendation
Modify addToken to not allow adding tokens that have already been added.

Resolution
The team has implemented the recommendation.

Audit Findings
MoonlightRedeem

RDM-01 - Security High Severity

DEEP LOGIC AUDIT | PAGE 16

Because of the redeem mechanism and the redeemFee, this contract runs the risk of
potentially locking in tokens (like USDT) forever. For example, if the redeemFee is
never changed to 0, or if no one owns any Moonlight tokens.

Recommendation
Add a way to extract tokens from this contract in such cases:

uint256 public lastRedeem;

constructor(address _moonlight) {
 ...
 lastRedeem = block.timestamp;
}

function redeem(uint256 amount) external {
 ...
 require(amount > 0, "Redeeming 0 is not allowed");
 lastRedeem = block.timestamp;
}

function recoverERC20(address tokenAddress, uint256 tokenAmount) external
onlyOwner {
 if(exists[tokenAddress]) {
 require(IERC20(moonlight).totalSupply() == 0 || block.timestamp - lastRedeem >
365 days, "Not allowed to recover");
 }
 IERC20(tokenAddress).transfer(IMoonlight(moonlight).owner(), tokenAmount);
}

Audit Findings
MoonlightRedeem

RDM-02 - Logical High Severity

DEEP LOGIC AUDIT | PAGE 17

Resolution
The team has implemented a recoverERC20 function which can be used by the
contract owner to transfer any ERC20 token out of the contract. The function can be
used at any time with no restrictions. The CrescentSwap team have explained that the
MoonlightRedeem contract is funded by CrescentSwap + CrescentSwap's revenue, and
therefore the contract owner reserves the right to deposit/withdraw from the
MoonlightRedeem contract as they please.

Audit Findings
MoonlightRedeem

RDM-02 - Logical High Severity

DEEP LOGIC AUDIT | PAGE 18

The IMoonlight interface defines a getOwner function that is not implemented by the
Moonlight contract.

Recommendation
Change getOwner to owner, in the IMoonlight interface and in the onlyOwner modifier
definition.

Resolution
The team has implemented the recommendation.

Audit Findings
MoonlightRedeem

RDM-03 - Logical High Severity

DEEP LOGIC AUDIT | PAGE 19

getFloorPrice and amountToRedeem do not implement the correct decimals math,
which will break when adding tokens to the contract with different decimals.

Recommendation
Change the code as follows:

function getFloorPrice(address token) external view returns (uint256) {
 return
 (IERC20(token).balanceOf(address(this)) *
 10 ** IERC20(moonlight).decimals()) /
 IERC20(moonlight).totalSupply();
}

function amountToRedeem(
 address token,
 uint256 amount
) public view returns (uint256) {
 return
 (IERC20(token).balanceOf(address(this)) * amount) /
 IERC20(moonlight).totalSupply();
}

Resolution
The team has implemented the recommendation.

Audit Findings
MoonlightRedeem

RDM-04 - Logical High Severity

DEEP LOGIC AUDIT | PAGE 20

The delete statement at the end of the redeem function does not have any benefit.

Recommendation
Remove the delete statement.

Resolution
The team has implemented the recommendation.

Audit Findings
MoonlightRedeem

RDM-05 - Logical Informational Severity

DEEP LOGIC AUDIT | PAGE 21

Overview
MoonlightRedeem

DEEP LOGIC AUDIT | PAGE 22

This contract burns Moonlight tokens from users in exchange for receiving tokens
like USDT that have been added to the contract. The percentage of tokens received
by users is the same as percentage of Moonlight tokens being burned of the
totalSupply of Moonlight tokens, minus a redeemFee.

The redeem function is used by users to burn the specified amount of Moonlight
tokens, in exchange for receiving their percentage of the tokens in the
MoonlightRedeem contract.

The redeemFee publicly viewable variable contains the percentage deducted from
the amount of tokens redeemed by users. It defaults to 2%, but can be changed to
anything between 0% and 50%. The Moonlight owner has admin powers to
change this value.

The tokens publicly viewable variable contains the list of token addresses that can
be redeemed by users. The Moonlight owner has admin powers to change this
value.

The amountToRedeemWithFee publicly viewable function can be used to return
the amount of a token that will be received if the specified amount of Moonlight
tokens is burned.

The recoverERC20 function is used to remove any amount of any token from the
contract. The Moonlight owner has admin powers to call this function.

How to Interpret Findings

Security - High Severity

Indicates that users' funds are at risk or that there is a high
probability of exploitation.

Security - Medium Severity

No risk to the protocol or those who interact with it, however it
should be highlighted nonetheless.

Logical - High Severity

Indicates that the errors puts users' funds at risk, or can result in
significant functional failure in the code.

Logical - Medium Severity

Indicates some functional failure or discrepancy in the code.

Logical - Informational

Minor discrepancy between the intended functionality of the code
and the implementation, which does not result in functional failure,
or a recommendation to improve the logic.

Yellow Text

Indicates centralization of control and admin powers.

Red Text

An important warning to take note of.

DEEP LOGIC AUDIT | PAGE 23

The information in this deep logic audit report objectively describes the
smart contracts being audited, and points out logical and mathematical
errors, security risks and vulnerabilities, and optimization opportunities in
the audited code. This deep logic audit does not ensure the correctness or
authenticity of any software or dApp that interacts with or claims to
interact with any smart contract.

This audit report does not constitute any advice whatsoever. You are
solely responsible for conducting your own due diligence and consulting
your financial advisor before making any investment decisions. Trust in
project owners is required to invest in this protocol as a Prisma Shield
audit does not ensure the fulfillment of roadmap deliverables and
allocation of funds. While our deep logic audits raise the level of security,
reliability, mathematical accuracy, and logical soundness of the smart
contracts reviewed, they do not amount to any form of warranty or
guarantee that the reviewed smart contracts are void of any weaknesses,
vulnerabilities, or bugs. Prisma Shield and its founders, employees,
owners, and associates are not liable for any damage or loss of funds.
Please ensure trust in the team prior to investing as this deep logic audit
does not guarantee the promised use of your funds.

Disclaimer

DEEP LOGIC AUDIT | PAGE 24

prismashield@gmail.com

prismashield.com

PrismaShield

Introducing Deep Logic
Smart Contract
Auditing to Web3

PrismaShield

mailto:prismashield@gmail.com
http://prismashield.com/
http://twitter.com/PrismaShield
https://t.me/PrismaShield

