
DEEP LOGIC AUDIT
REPORT
CrescentSwap: Artemis Token and
FeeRecipient Contracts

APR 06 2023

CRESCENTSWAP

Overview 03

Contract Addresses 06

Artemis 07

FeeRecipient 17

How To Interpret Findings 22

Disclaimer 23

Table of Contents

DEEP LOGIC AUDIT | PAGE 3

Overview

This audit only covers the Artemis and FeeRecipient contracts. It does
not cover any other contracts built by CrescentSwap.

Please note that the FeeRecipient contract has a dependency on the
GenesisArtemisApes smart contract
(0x5dc5695cc991f277f47ecef73f5a016d8a938b94) which has not
been audited by Prisma Shield. If said contract contains any errors, it
could negatively affect the FeeRecipient contract and any user funds
associated with it.

A deep logic smart contract audit is a human-driven code review
that checks all of the code business logic for bugs, mathematical
errors, and security risks. The audit verifies that the code honors
the whitepaper. In addition, this service includes mainnet testing
and proactive communication with the project owners to ensure
full comprehension of the project to provide the best possible code
review quality.

What is a Deep Logic Audit?

https://arbiscan.io/address/0x5dc5695cc991f277f47ecef73f5a016d8a938b94#code

DEEP LOGIC AUDIT | PAGE 4

Overview

Total Findings Resolved Acknowledged

Total Findings 12 8 4

High Security Findings 2 0 2

Medium Security Findings 2 2 0

High Logical Findings 3 2 1

Medium Logical Findings 1 1 0

Informational Findings 4 3 1

Findings Summary

ID Section Type Severity Page Status

ART-01 Artemis Logical High 07 Resolved

ART-02 Artemis Security Medium 08 Resolved

ART-03 Artemis Security Medium 09 Resolved

ART-04 Artemis Logical Medium 10 Resolved

ART-05 Artemis Logical Informational 11 Acknowledged

ART-06 Artemis Logical Informational 12 Resolved

ART-07 Artemis Logical Informational 13 Resolved

DEEP LOGIC AUDIT | PAGE 5

Overview
Findings Summary

ID Section Type Severity Page Status

ART-08 Artemis Logical Informational 14 Resolved

FEE-01 FeeRecipient Security High 17 Acknowledged

FEE-02 FeeRecipient Security High 18 Acknowledged

FEE-03 FeeRecipient Logical High 19 Acknowledged

FEE-04 FeeRecipient Logical High 20 Resolved

DEEP LOGIC AUDIT | PAGE 6

Contract Addresses
Artemis
https://arbiscan.io/address/0x3DD2E3005aE6Eda0D8A3967F6fC0799c4C842A08#c
ode

FeeRecipient
https://arbiscan.io/address/0x87503DF392591D9eD31EFb0F265c795D489f8653#co
de

https://arbiscan.io/address/0x3DD2E3005aE6Eda0D8A3967F6fC0799c4C842A08#code
https://arbiscan.io/address/0x87503DF392591D9eD31EFb0F265c795D489f8653#code

In tokensToMint, the math does not match the promise made in the documentation. It
is presented in the code as:

_totalSupply * received / (totalBacking + 8% * received) * 92%

When it should simply be:

_totalSupply * received / totalBacking * 92%

Recommendation
Modify the code to be
_totalSupply.mul(received).div(totalBacking).mul(mintFee).div(feeDenominator);

Resolution
The team has implemented the recommendation.

Audit Findings
Artemis

ART-01 - Logical High Severity

DEEP LOGIC AUDIT | PAGE 7

In addition to approve, the functions increaseAllowance and decreaseAllowance
should be implemented to mitigate the well-known issues around setting allowance
(https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729).

Recommendation
Add the increaseAllowance and decreaseAllowance implementations:

function increaseAllowance(address spender, uint256 addedValue) external returns
(bool) {
 uint256 amount = _allowances[msg.sender][spender].add(addedValue);
 _allowances[msg.sender][spender] = amount ;
 emit Approval(msg.sender, spender, amount);
 return true;
}

function decreaseAllowance(address spender, uint256 subtractedValue) external
returns (bool) {
 uint256 amount = _allowances[msg.sender][spender].sub(subtractedValue,
"Decreased allowance below zero");
 _allowances[msg.sender][spender] = amount ;
 emit Approval(msg.sender, spender, amount);
 return true;
}

Resolution
The team has implemented the recommendation.

Audit Findings
Artemis

ART-02 - Security Medium Severity

DEEP LOGIC AUDIT | PAGE 8

https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729

setFees does not check that the fees are less than or equal to 10**5. WIthout this
check, if the contract owner sets the fees to a number larger than 10**5, this can have
adverse effects on user funds.

Recommendation
Add the check that the fees are less than are equal to 10**5 in setFees.

Resolution
The team has implemented the recommendation.

Audit Findings
Artemis

ART-03 - Security Medium Severity

DEEP LOGIC AUDIT | PAGE 9

In transfer, if the recipient is the msg.sender, then this triggers _sell. This may result in
unexpected behavior for a user who intends to just transfer the tokens to themselves
(e.g. for testing or any other reason). Moreover, the same behavior should be
implemented in transferFrom for consistency.

Recommendation
Remove the call to to _sell in transfer and just call _transferFrom, and change
_transferFrom as such:

function transfer(address recipient, uint256 amount) external override nonReentrant
returns (bool) {
 return _transferFrom(msg.sender, recipient, amount);
}

function _transferFrom(address sender, address recipient, uint256 amount) internal
returns (bool) {
 require(recipient != address(0) && sender != address(0), "Transfer To Zero");
 if (sender == recipient) {
 require(_balances[sender] >= amount, "Insufficient Balance");
 emit Transfer(sender, recipient, amount);
 return true;
 }
 ...
}

Resolution
The team has implemented the recommendation.

Audit Findings
Artemis

ART-04 - Logical Medium Severity

DEEP LOGIC AUDIT | PAGE 10

In transfer and _transferFrom, if the sender == recipient, a Transfer event is emitted
without checking that _balances[sender] is larger than or equal to the amount being
transferred.

This is a "visual" bug, and does not have any side effects on the smart contract other
than, if user A is approved to transfer from user B, and then user A transfers from user
B to user B more than user B's balance, then this will change the approval even though
the transaction is supposed to fail and revert.

Recommendation
Before the Transfer event is emitted, check that _balances[sender] is enough. See the
implementation provided in ART-04.

Resolution
The team has acknowledged that this is a minor "visual" bug and has not implemented
the fix.

Audit Findings
Artemis

ART-05 - Logical Informational Severity

DEEP LOGIC AUDIT | PAGE 11

setFeeRecipient does not set isTransferFeeExempt to false for the old feeRecipient.

Recommendation
Set isTransferFeeExempt[feeRecipient] = false; before updating the feeRecipient.

Resolution
The team has implemented the recommendation.

Audit Findings
Artemis

ART-06 - Logical Informational Severity

DEEP LOGIC AUDIT | PAGE 12

_mintWithBacking does not check that the recipient is not the zero address.

Recommendation
Add the check require(recipient != address(0), 'Zero Address'); to _mintWithBacking.

Resolution
The team has implemented the recommendation.

Audit Findings
Artemis

ART-07 - Logical Informational Severity

DEEP LOGIC AUDIT | PAGE 13

The checks in _mintWithBacking for the user's USDT balance are not required,
because the USDT transfer function will fail anyways if the user's balance is
insufficient
There is no need for block.timestamp + 300 in the router.swapExactETHForTokens
function call, simply using block.timestamp is sufficient

A couple of gas-saving opportunities:

Recommendation
Remove the user USDT balance checks in _mintWithBacking, and just use
block.timestamp in the router.swapExactETHForTokens function call.

Resolution
The team has implemented the recommendation.

Audit Findings
Artemis

ART-08 - Logical Informational Severity

DEEP LOGIC AUDIT | PAGE 14

Overview
Artemis

DEEP LOGIC AUDIT | PAGE 15

This contract is an ERC20 token that is backed by USDT stored in the contract. The
token can be bought and sold directly through the contract, but the amounts
received are less than the backing price, which means that the backing price
increases as the token is bought, sold, and transferred. If USDT loses its peg to the
dollar, then the Artemis token will also lose its value.

When the token is transferred from an address that is not isTransferFeeExempt to
an address that is also not isTransferFeeExempt, the receiving address receives
transferFee percentage (defaults to 92%) of the amount transferred.
feeRecipientPercentage (defaults to 50%) of the remainder of the amount (4% of
the amount transferred) is sent to the feeRecipient address, and anything that is
left (final 4% of the amount transferred) is burned. The contract owner has admin
powers to change isTransferFeeExempt and transferFee (minimum 90%), while the
feeRecipientSetter has admin powers to change the feeRecipient and
feeRecipientPercentage (up to 100%).

mintWithNative and mintWithBacking can be used to mint new Artemis tokens
(the former using ETH, and the latter using USDT). The address performing the
mint, if not isTransferFeeExempt, will mint mintFee percentage (defaults to 92%) of
the amount that is based on the backing price. feeRecipientPercentage (defaults to
50%) of the remainder of the amount based on the backing price (4%) will be
minted to the feeRecipient address. The contract owner has admin powers to
change the mintFee (minimum 90%), and can also disable/enable these functions
to prevent/allow new token mints. They can also change the router used to swap
ETH to USDT (defaults to UniswapV2Router).

sell can be used to sell the Artemis token for USDT. If the seller is not
isTransferFeeExempt, sellFee percentage (defaults to 92%) of the amount is sold
to USDT. feeRecipientPercentage (defaults to 50%) of the remainder of the unsold
tokens (4%) is sent to the feeRecipient address, and anything that is left (4%) is
burned. This function cannot be disabled. The contract owner has admin powers to
change the sellFee (minimum 90%).

Overview
Artemis

DEEP LOGIC AUDIT | PAGE 16

The calculatePrice externally viewable variable returns the USDT backing price of 1
Artemis token.

The amountOut externally viewable variable returns the USDT backing price of the
specified number of Artemis tokens.

The getValueOfHoldings externally viewable variable returns the USDT backing
price of the Artemis holdings of the specified user address.

The contract owner has admin powers to withdraw any token from the Artemis
contract other than USDT.

The contract owner has admin powers to change the contract owner as well as the
feeRecipientSetter.

This contract has a dependency on the
0x5Dc5695Cc991f277f47EcEF73f5A016d8a938B94 GenesisArtemisApes contract
which is not being audited by Prisma Shield, and therefore code paths that rely on that
contract might have logical errors or security vulnerabilities.

Recommendation
It is advisable that this contract is also audited to ensure correctness.

Resolution
The team declined to have that contract audited by Prisma Shield. Their reasoning was
that it is a simple NFT contract that does not require an audit.

Audit Findings
FeeRecipient

FEE-01 - Security High Severity

DEEP LOGIC AUDIT | PAGE 17

https://arbiscan.io/address/0x5Dc5695Cc991f277f47EcEF73f5A016d8a938B94#code

The withdraw function allows only dev0 to call it and withdraw any token from the
contract, including the Artemis token.

Recommendation
This function should be removed, or it should be modified to not allow withdrawing the
Artemis token.

Resolution
The team confirmed that the withdraw function was added for safety net in case of
extreme circumstance. The team also confirmed that dev0 is set to the address of a
doxxed owner.

Audit Findings
FeeRecipient

FEE-02 - Security High Severity

DEEP LOGIC AUDIT | PAGE 18

distributeBalance has a loop over an externally modifiable length, which could lead to
out-of-gas errors if the loop grows too large, which would lock out the trigger function
in this contract from being called.

Recommendation
Loops should be limited in size to avoid this class of errors.

Resolution
The team confirmed that the external variable is controlled via owner and not
manipulatable unless under extreme circumstances.

Audit Findings
FeeRecipient

FEE-03 - Logical High Severity

DEEP LOGIC AUDIT | PAGE 19

distributeBalance returns if the totalSupply() >= 0, and therefore never distributes the
funds to the NFT holders.

Recommendation
That if-condition should be changed to if (totalSupply() == 0).

Resolution
The team has implemented the recommendation.

Audit Findings
FeeRecipient

FEE-04 - Logical High Severity

DEEP LOGIC AUDIT | PAGE 20

Overview
FeeRecipient

DEEP LOGIC AUDIT | PAGE 21

This contract receives Artemis tokens and distributes them, 1/4th of the tokens are
split equally between 4 addresses: dev0, dev1, dev2, and dev3. The remaining
3/4th are split equally between NFT holders.

The trigger function is what distributes the tokens as described above. Only one of
dev0, dev1, dev2, or dev3 can call this function.

The withdraw function can be used to withdraw any token from the contract,
including the Artemis token (without having it be destributed to any of the other
addresses). dev0 has admin powers to call this function.

Each of dev0, dev1, dev2, and dev3 has the ability to change only their address.

How to Interpret Findings

Security - High Severity

Indicates that users' funds are at risk or that there is a high
probability of exploitation.

Security - Medium Severity

No risk to the protocol or those who interact with it, however it
should be highlighted nonetheless.

Logical - High Severity

Indicates that the errors puts users' funds at risk, or can result in
significant functional failure in the code.

Logical - Medium Severity

Indicates some functional failure or discrepancy in the code.

Logical - Informational

Minor discrepancy between the intended functionality of the code
and the implementation, which does not result in functional failure,
or a recommendation to improve the logic.

Yellow Text

Indicates centralization of control and admin powers.

Red Text

An important warning to take note of.

DEEP LOGIC AUDIT | PAGE 22

The information in this deep logic audit report objectively describes the
smart contracts being audited, and points out logical and mathematical
errors, security risks and vulnerabilities, and optimization opportunities in
the audited code. This deep logic audit does not ensure the correctness or
authenticity of any software or dApp that interacts with or claims to
interact with any smart contract.

This audit report does not constitute any advice whatsoever. You are
solely responsible for conducting your own due diligence and consulting
your financial advisor before making any investment decisions. Trust in
project owners is required to invest in this protocol as a Prisma Shield
audit does not ensure the fulfillment of roadmap deliverables and
allocation of funds. While our deep logic audits raise the level of security,
reliability, mathematical accuracy, and logical soundness of the smart
contracts reviewed, they do not amount to any form of warranty or
guarantee that the reviewed smart contracts are void of any weaknesses,
vulnerabilities, or bugs. Prisma Shield and its founders, employees,
owners, and associates are not liable for any damage or loss of funds.
Please ensure trust in the team prior to investing as this deep logic audit
does not guarantee the promised use of your funds.

In its current form, the Artemis token solely relies on transaction volume
as its driving mechanism. It is collateralized by the USDT token
(0xFd086bC7CD5C481DCC9C85ebE478A1C0b69FCbb9) which has not
been audited by Prisma Shield. If USDT encounters issues of any kind that
cause loss of value, ARTMS will be affected.

Disclaimer

DEEP LOGIC AUDIT | PAGE 23

https://arbiscan.io/address/0xfd086bc7cd5c481dcc9c85ebe478a1c0b69fcbb9#code

prismashield@gmail.com

prismashield.com

PrismaShield

Introducing Deep Logic
Smart Contract
Auditing to Web3

PrismaShield

mailto:prismashield@gmail.com
http://prismashield.com/
http://twitter.com/PrismaShield
https://t.me/PrismaShield

